計算工学講演会論文集 Vol.30 (2025年6月)

日本計算工学会

意匠系学科における有限要素法教育

Finite Element Method Education in Design Departments

渡邉浩志1)

1) 株式会社テクスパイア(〒102-0083 東京都千代田区麹町3丁目3番8号 麹町センタープレイス 4F E-mail: watanabe.hiroshi@techspire.co.jp)

This paper reports on a lecture related to the finite element method given in a design department where students are proficient in CAD operation but have not studied mechanics of materials. The theme of the lecture was to analyze a seemingly unbreakable but fragile object using a general-purpose FEM code and to discuss its mechanics.

Key Words: CAE, CAD, Design, Finite Element Analysis, Education

1. はじめに

私たちの身の回りにある人工物すなわち各種の工業製品には一見よさそうに思えるが、しばしば力学的に安全とは言えない構造物もある。例えば図1に示すような鎖のCAD図面には大きな問題があるようには見えない。しかし鎖に張力が作用した際には、一般的には上下のコマが安定して中央の1点での接触状態を維持していることは期待できず、接触部が左右どちらかの湾曲部に移動して安定することが考えられ、その場合は鎖の全長が意図した範囲を大きく超えて伸びることになる。もし中央の1点で接触し続けたとすれば、左右のRの間の直線部の応力状態は梁の曲げになるので、構造的に弱いことがわかる。

Fig.1 Structures where the problem is not apparent at first glance

一般に工業製品は、それらの初期バージョンが誕生した瞬間から機能改善が始まり、世代を重ねて壊れにくいものになっていく。ただし初期バージョンが壊れやすいのは、あくまで、後から振り返って比較した場合の話であり、最初から壊れやすいものを意図して世に送り出される工業製品は無いと考えられる。しかしながら、上記のような壊れやすい構造物の例は、いつまでたっても、なくな

らないような印象もある。

近年、ミッドレンジCADの高機能化と低価格化により 産業界における利用範囲は急速に広がっている。従来の 自動車、航空機など主に金属製の構造体の設計製図から、 日用品、特に樹脂や木材などといった分野に広がってき ている。これらのミッドレンジCADにはCAEの機能が組 み込まれているものが多いので、力学的な検討をする環 境も整ってきているといえる。

しかしながら、CADを操作する担当者が、材料力学の知識のあるエンジニアから、意匠が専門のデザイナーに移行してきている分野もある。この場合、デザイナーがCAEの機能があることを知らない、またはCAEの機能は知っていても、正しい入力や結果の評価の方法を知らないことが想定される。その場合デザイナー個人の経験により構造物の力学的な合理性が検討されることになり、デザイン性を重視するあまり、構造強度・安定性が軽視される危険性がある。

このような状況を背景として、著者はインダストリアルデザインを志向する学生が多い、芝浦工業大学デザイン学部デザイン工学科2年生を対象に、有限要素法の講義を行った。受講者数は最終的に125名であった。製図に関しては多くの学生が3D CAD (Fusion 360 (Autodesk社製))を十分に使いこなしている印象がある。これに対して材料力学に関しては必修科目ではないため受講しているのは半数程度で、さらに十分理解しているとはいいがたい状況の学生も多い。ただしCAEについては、少数ではあるが、Fusion 360の演習の一部で履修し操作法を理解している学生もいた。

本稿ではこの講義内容について報告する。講義は2コマ連続で正月休みを挟んで週1回で、全7回(14コマ)である。

また、主な内容は以下のとおりである。

- 1. 材料力学の基本的な考え方の説明
- 2. 汎用CAEソフトの操作方法の説明。
- 3. グループワークにより解析対象物を選定して実際 に 3DCAD でソリッドモデルを作成して、解析を 行う。
- 4. 解析結果をグループごとにプレゼンして、受講者は他のグループのプレゼンを採点する。
- 5. 成績評価は、各グループのレポートと、受講者個人のレポート、および学生による採点結果を総合して採点する。

講義は、対面及びオンライン配信で開催し、レコーディングも行うことで、欠席者でも内容を把握できるようにした。特に講義の途中で海外留学した学生がいたが、講義アーカイブを視聴することにより、単位取得に至っている。

2. 講義カリキュラム

全7回の講義では、以下のような内容を取り扱った

- 1. ガイダンス
- 2. CAEユーザーの心得
- 3. 解析の結果の品質保証(V&V)入門
- 4. 力学特性と形状
- 5. グループワーク1
- 6. グループワーク2
- 7. 最終プレゼンテーション

第2回の講義の課題としてグループ分けを指示した。目安は5名程度としたが、学生の自主性を重んじて自由にした。その結果、24グループでき、人数は以下のような分布になった。最小2名から最多9名であるが4名~6名が大半である。すべての講義が終了してから判明したが、グループの人数としても4名~6名が適切であった。これは、CADやCAEのスキルによりグループ内での役割分担が過不足なく自然に割り振られるが、人数が少ないと逆にごく一部の学生に仕事が集中し、逆に人数が多いと貢献度の低い学生が発生しやすい。

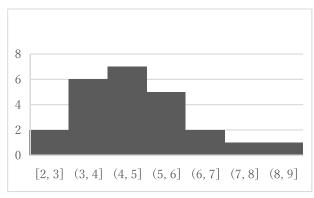


Fig.2 Number of members per group

3回以降の講義では毎回解析テーマについての課題を

出し、次週の講義で各グループから提出された資料を基に、デザインレビューを行った。この時、他のグループの状況を確認できるように、デザインレビューはすべて講義の中で公開で行い、受講生がレポートを提出する履修サイトに同内容のテキストデータを記載した。材料力学の基礎知識の前提がなく、120名を超える講義でCAE実習を行うにあたっては、たとえ線形の範囲に限定した解析を行うにしても、テーマの選定は慎重に行う必要がある。自分たちのプランに対するレビューだけでなく、他のグループのレビューも参考にして、解析可能かつ力学的にも意味があるテーマに収斂していった印象がある。

第6回目の講義では事前に解析するモデルのCADデータを用意してもらい、講義中で1例だけでも解析可能な状態にした。意欲的なグループは別の解析例も追加してパラメータスタディを行ったところもある。

演習には、Ansys Mechanical student edition を使用した。 ソリッドデータはCADで作成するので、CAEのプリポストでは、材料特性と、境界条件の設定を行うことになる。 材料特性は、鋼とプラスチックに限定して、損傷の条件もミーゼス相当応力が基準値を超えたことで判断することのみに限定した。境界条件の設定は、モデル依存で難しいが、教員が個別モデルについてアドバイスすることで対応した。解析モデルは比較的肉厚の構造に限定して、オートメッシュによるソリッド要素のみを用いた。高次の6面体あるいは4面体要素を用いている。メッシュ分割の精度検証は一部のグループで実施にとどまった。

本格的なグループワークは、この講義が初めてだったとのことだが、みな総じて意欲的に課題に取り組んでいた。特に講義後のアンケートからは、解析の重要性に気が付き、今後のデザイン活動に積極的に取り入れたいなどの意見が多かったことが印象的である。レポートについても、他のグループの解析例に触発されて独自に類例を設定して、CADモデルの作成から解析まで行った学生もいた。

3. 解析例

講義で行ったプレゼンテーションにおいて、最も高い評価を得た解析例を紹介する。IKEA製の椅子 POÄNG は耐久性に優れているとして紹介されているが、想定外の荷重では破壊に至る。実物を実測しCADモデルを作成して、通常の荷重と、斜め方向からの荷重を加えて違いを比較検討した。この時の実物の寸法を Fig.3 に、CADモデルをFig.4 に示す。このモデルを Fig.5 に示す斜めからの荷重を模擬した境界条件により解析した結果を Fig.6 に示す。脚部に大きな曲げ応力が生じ、破壊につながっていることがわかる。

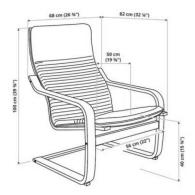


Fig. 3 Dimensions of each part

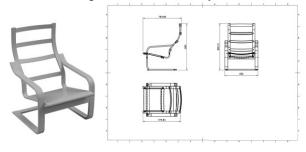


Fig. 4 CAD model

Fig. 5 Boundary condition

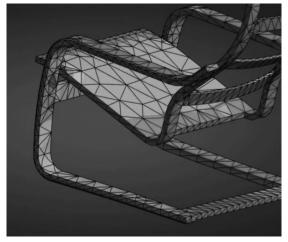


Fig. 6 Maximum Principal Stress

また別のグループは、Fig.7 に示すフックの下部に引張荷重を作用させる解析を行った。曲げモーメントが生じるので、断面積が大きいよりも、断面2次モーメントが大きいほうが変形も小さく、したがって応力も低くなる。これをCAEのケーススタディにより発見的に理解して発表した。材料力学の知識があれば当然の結果といえるが、実物を工作し実験するのではなく、CAEが仮想実験となり、理解に至ったことは今後の教材開発に向けた参考となる。

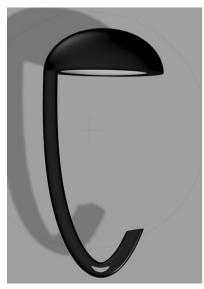


Fig. 7 Hook

Fig. 8 Influence of sectional secondary moment

4. まとめ

本論文では意匠系学科における有限要素法教育の一例を紹介した。学問としての材料力学は、決して単純ではない定式化や、結果として得られる微分方程式を解く作業が多く、専門以外の学生には敷居が高い。それに対して有限要素法は、正しく用いることができれば実際に存在する構造物の応力状態を理解することができ、設計の良し悪しを判断する材料を提供できる。また、得られた結果の解釈の裏付けとしての材料力学を学ぶモティベーションにもつながると考えられる。

この講義ではAnsys Japanのご協力によりAnsys Academic Programを活用させていただいた。ここに記して感謝申し上げます。